46 Permutations – Medium
Problem:
Given a collection of numbers, return all possible permutations.
For example, [1,2,3] have the following permutations: [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and [3,2,1].
Thoughts:
It could be solved using modified DFS. Each time insert one element that has not been inserted yet.
The idea it so start with empty set. Each time , one number is introduced, for each existing solution, insert this number to all possible positions. This is the non-DFS version solution.
Solutions:
DFS:
class Solution {
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> res = new LinkedList<>();
boolean[] visited = new boolean[nums.length];
dfs(nums, res, new LinkedList<Integer>(), visited);
return res;
}
private void dfs(int[] nums, List<List<Integer>> res, List<Integer> curr, boolean[] visited) {
if (curr.size() == nums.length) {
res.add(new LinkedList<Integer>(curr));
return;
}
for (int i = 0; i < nums.length; i ++) {
if (visited[i] == false) {
visited[i] = true;
curr.add(nums[i]);
dfs(nums, res, curr, visited);
curr.remove(curr.size() - 1);
visited[i] = false;
}
}
}
}
Non-DFS version:
public class Solution {
public List<List<Integer>> permute(int[] num) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
//start from an empty list
result.add(new ArrayList<Integer>());
List<List<Integer>> current = new ArrayList<List<Integer>>();
for (int i = 0; i < num.length; i++) {
//list of list in current iteration of the array num
current.clear();
for (List<Integer> l : result) {
// # of locations to insert is largest index + 1
for (int j = 0; j < l.size()+1; j++) {
// + add num[i] to different locations
l.add(j, num[i]);
ArrayList<Integer> temp = new ArrayList<Integer>(l);
current.add(temp);
l.remove(j);
}
}
result = new ArrayList<List<Integer>>(current);
}
return result;
}
}