562 Longest Line of Consecutive One in Matrix
Problem:
Given a 01 matrix M, find the longest line of consecutive one in the matrix. The line could be horizontal, vertical, diagonal or anti-diagonal.
Example:
Input:
[[0,1,1,0],
[0,1,1,0],
[0,0,0,1]]
Output: 3
Hint: The number of elements in the given matrix will not exceed 10,000.
Solutions:
public class Solution {
public int longestLine(int[][] M) {
int res = 0;
if (M == null || M.length == 0 || M[0].length == 0) {
return 0;
}
int m = M.length, n = M[0].length;
int[][][] dp = new int[m][n][4];
// dp[x][y][0] is for horizontal
// dp[x][y][1] is for vertical
// dp[x][y][2] is for diagonal
// dp[x][y][3] is for anti-diagonal
dp[0][0][0] = dp[0][0][1] = dp[0][0][2] = dp[0][0][3]= M[0][0];
res = Math.max(res, M[0][0]);
for (int i = 0; i < m; i ++) {
for (int j = 0; j < n; j ++) {
if (M[i][j] == 1) {
dp[i][j][0] = dp[i][j][1] = dp[i][j][2] = dp[i][j][3] = 1;
if (j > 0) {
dp[i][j][0] = dp[i][j - 1][0] + 1;
}
if (i > 0) {
dp[i][j][1] = dp[i - 1][j][1] + 1;
}
if (i > 0 && j > 0) {
dp[i][j][2] = dp[i - 1][j - 1][2] + 1;
}
if (j + 1 < n && i > 0) {
dp[i][j][3] = dp[i - 1][j + 1][3] + 1;
}
res = Math.max(res, dp[i][j][0]);
res = Math.max(res, dp[i][j][1]);
res = Math.max(res, dp[i][j][2]);
res = Math.max(res, dp[i][j][3]);
}
}
}
return res;
}
}